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Abstract
We develop a new conception for the quantum mechanical arrival time
distribution from the perspective of Bohmian mechanics. A detection
probability for detectors sensitive to quite arbitrary spacetime domains is
formulated. Basic positivity and monotonicity properties are established.
We show that our detection probability improves and generalizes an earlier
proposal by Leavens and McKinnon. The difference between the two notions
is illustrated through application to a free wavepacket.

PACS number: 03.65.−w

1. Introduction

According to quantum theory, the probability of the macroscopic event, which is caused by
a microscopic system during an act of measurement, is of the type Tr(ρt0E). Here E is an
orthogonal projection within the system’s Hilbert space and ρt0 is the system’s density operator
at time t0. The time t0, at which the approximately instantaneous measurement interaction takes
place, is determined by the experiment’s design. There are, however, important situations
which do not—even approximately—fit into this framework in any obvious way. Consider for
instance an unstable nucleus, which is monitored for several days by some initially activated
detector. You patiently sit next to the detector, and register the time when you hear the click.
What is the probability that you hear the click during a certain time interval? A cleaner model
situation involves a freely propagating one particle wavepacket, which slowly sweeps over a
detector activated at time 0. The detector is small compared to the size of the wavepacket.
What is the probability P(T ) of a click happening at any time t in the range 0 < t < T ? The
function P is called arrival time distribution. Several proposals try to answer this question
without reproducing the quantum Zeno paradox [1]. Let us describe them briefly. For an
extensive summary of the subject see [2].
1 Present address: Institut für Anästesiologie und Intensivmedizin, Universität Innsbruck, Anichstr. 35, A-6020
Innsbruck, Austria.
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A first approach attempts to fit P(T ) into the scheme Tr(ρt0E) through quantizing the
phase space function A, which represents the classical time of arrival. The function A maps
each phase space point from its domain onto that finite time, at which (according to the
system’s classical dynamics) this point enters the detector’s location. WithE being the spectral
projection of the quantized A associated with the spectral interval (0, T ) it is assumed that
P(T ) = Tr(ρ0E). Working out this general idea reveals that ad hoc regularization assumptions
are needed, in order to obtain a self-adjoint quantization of A [3]. The need for regularization
is both due to the unboundedness of A around p = 0 and to a classically unspecified operator
ordering. Due to its regularization ambiguity, this definition ofP(T ) does not seem convincing.

A second strategy attempts to derive the arrival time distribution from a unitary quantum
dynamical model of the continuing observation process and a single final measurement, i.e.
the ‘reading out of the observer’s notices’. To this end, an auxiliary quantum system is
coupled to the particle during the time interval (0, T ). The auxiliary system’s position is
taken as the pointer position of a clock and its evolution is stopped through an interaction
with the particle’s wavefunction [4]. This approach does not yield the picture of a sudden
click happening at a certain time t ∈ (0, T ), but rather of a smooth influence being exerted
onto a position distribution. Only the final observation at a controllable time t0 > T then
produces the stochastic position value, which is interpreted as an approximate time of arrival.
Therefore, our macroscopic impression that facts are permanently established in the course
of time, instead of being created with a final measurement only—‘at the end of the day’, as
Sheldon Goldstein has phrased it2—remains unexplained.

A third way of defining P is obtained by exposing the particle’s wavefunction to an
absorbing detector, whose influence onto the wavefunction is modelled by a nonhermitean
Hamiltonian, e.g. [5]. Thereby the one particle dynamics becomes nonunitary and the quantity
−(d‖ψt‖2/dt)|dt | for ‖ψ0‖ = 1 is then—up to an overall normalization—interpreted as the
probability density of clicks at time t . However in general, though not in [5], −(d‖ψt‖2/dt)
may take negative values, which in turn implies that the probability P(T ) = 1 − ‖ψT ‖2 (for
the detector to click sometimes between time 0 and time T ) may decrease upon increasing T .
Clearly, a decreasing probability is questionable if one imagines say 1000 independent copies
of the system side by side and the percentage of counters having made their click is monitored
as a function of time. If this percentage decreases with T , a mechanism seems to be at work,
which makes clicks unhappen!

Finally, Leavens [6, 7] and McKinnon and Leavens [8] have defined an arrival time
distribution P , which is motivated by the Bohmian flow connected with a solution ψt
of Schrödinger’s equation. They considered the one-dimensional case and argued that
the (conditional) probability density of clicks equals const · |j (t, L) dt |, where j (t, L)

is the spatial probability current density at the detector’s location L at time t . When∫∞
0 dt |j (t, L)| =: c < ∞, the conditional arrival time distribution

P(T ) = 1

c

∫ T

0
dt |j (t, L)| (1)

is a nondecreasing (non-negative) function on the interval (0,∞). Yet the integral∫∞
0 dt |j (t, L)| need not be finite, as for example in the case of an harmonic oscillator dynamics,

where the mapping t �→ j (t, L) is periodic. In such cases, therefore, the definition (1) does
not make sense.

The probability density ∼|j (t, L)| is derived by Leavens as the ‘infinitesimal’ probability
that the particle’s Bohmian trajectory passes the point L during dt at time t provided the
Bohmian position at time 0 is distributed by |ψ0|2|dx|. If one assumes that the detector clicks
2 Private communication.
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each time it intersects with the particle’s Bohmian trajectory, the density |j (t, L) dt |/c indeed
yields the probability density of clicks. This seems to be a reasonable idealization if the
detector is active during a short time interval. What happens, however, if the detector is active
over a longer period of time, such that the same trajectories pass the detector more than once?
Does a detector really increase its click probability when trajectories intersect, which have
done so before?

The possibility of multiple intersections between Bohmian trajectories and detector
positions has already been taken into account in [9, 10]. These works have ruled out multiple
intersections for scattering situations. For a summary see also chapter 16 of Dürr’s recent text
book [11] or [12]. As a next step, in the context of ‘near field scattering’ the exit time statistics
from a large but finite sphere around the scattering centre has been investigated in [13]. In the
case of multiple crossings of the sphere’s surface by Bohmian trajectories, the replacement
of j in equation (1) by a truncated current has been proposed in [13], in order to obtain the
correct exit time statistics. The truncated current only counts the first exit of trajectories
as detection events. This is reasonable if the initial wavepacket is well localized within the
sphere. Yet if a considerable part of the wavepacket has left the sphere by the time the detector
is activated, those trajectories, which have already entered the detector and stay there, carry
a non-negligible portion of probability. Accordingly they should contribute to the detector’s
click probability. However these trajectories do not contribute to the surface integral of the
truncated current. Thus under such circumstances a more general prescription is needed to
count also those trajectories which are confined to the detection volume during the full period
of detector activity.

In this paper we propose and explore a very natural definition of detection probability
within Bohmian mechanics, which on the one hand meets the above needs for generalization but
also implies the idea of using the truncated current for the exit time problem described in [13].
The physical argument behind it is quite simple: a realized trajectory induces a detection
event at the earliest instance only, when this trajectory falls into the detector’s volume because
thereafter the detector remains discharged. According to Bohmian mechanics each individual
trajectory is realized with an ‘infinitesimal’ probability to be computed from the wavefunction.
Adding up these infinitesimal probabilities for all the trajectories intersecting the detector’s
volume during its period of activity then yields this detector’s click probability. Assuming
this, we obtain an expression for the arrival time probability density, which in general depends
on the spacetime region to which the detector is sensitive. In cases, where each Bohmian
trajectory crosses a (point-like) detector at most once, equation (1) remains valid. However,
our definition yields different probabilities otherwise.

Why an experimental decision between the various conflicting proposals for P(T ) is not
yet feasible has been indicated in section 10 of the latest review of the subject [2]. The basic
reason seems to lie in the difficulties in preparing a specific wavepacket which has to be large
compared to the detector’s size and which in addition has to pass the detector sufficiently
slowly. Clearly such experiments are not precluded on principle.

After a brief summary of Bohmian mechanics in section 2, we develop our definition
of the arrival time distribution P(T ) in sections 3–5 within a Galilean spacetime framework.
Using spacetime proves very suggestive since Bohmian trajectories become one-dimensional
submanifolds (worldlines) instead of mappings. In section 3 we define the Galilean (one
particle) spacetime from its structural atlas. Section 4 contains an outline of conserved flows on
Galilean spacetime. Here again, we choose the coordinate independent formalism of exterior
calculus. This has the following advantage. When computing the flux through a (possibly
moving) hypersurface it is the current 3-form which is integrated over a 3-manifold. Neither a
metric spacetime structure nor a normal vector field, both breaking Galilean invariance, need
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to be introduced. The main result of this section is the formula of definition 4 which gives
the amount of conserved ‘mass’ passing through a spacetime region X. In section 5 we apply
this formula to the flow of the quantum mechanical position probability. Here our definition
of the detection probability is obtained from the quantum mechanical probability measure on
the set of Bohmian worldlines (orbit space), which follows from the wavefunction ψ under
consideration. The probability that a detector clicks is assumed to equal the probability measure
of the set X̃ of all those orbits that have a nonempty intersection with the spacetime region X,
to which the detector is sensitive. This measure in turn equals the usual quantum mechanical
probability measure to detect a particle with wavefunction ψ at t = 0 within the set of all
those locations which are taken by the orbits of X̃ at t = 0. Our definition works for very
general, extended spacetime regions and it works for the free Schrödinger dynamics as well as
for those with nonzero potential. The coordinate independent treatment guarantees Galilean
invariance of the detection probability for zero potential. In section 6 we illustrate our notion
of P(T ) through the example of a free standing Gaussian wavepacket.

Our definition of P(T ) in terms of the Bohmian flow could be improved by taking
into account the detector’s influence on the particle’s Bohmian trajectories. Since the latter
become projections of the higher-dimensional orbits of the detector plus particle system, this
effect can be considerable even for detectors without any back reaction onto the particle
wavefunction [14]. The general idea of our approach, however, remains the same. Also
if the detector (or even the observer) is modelled as part of the quantum system, an assumption
has to be made about when each individual orbit generates the click (in the observer’s mind).
This rule then mathematically represents the discrete event, which is missing from standard
quantum theory.

2. Summary of Bohmian mechanics

The density operator ρ, representing the state of a quantum system with (separable) Hilbert
space H, defines a probability measure Wρ,A on the spectrum of any self-adjoint operator A
of H. It is given by Wρ,A(I ) = Tr(ρEA(I)) where EA(I) denotes the spectral projection
of A associated with the Borel set I ⊂ spec(A) ⊂ R. Standard quantum theory assumes
that, if a measurement of the observable A is performed on the state ρ, then Wρ,A(I ) equals
the probability of the event ‘the measured spectral value a of A belongs to I ’. Now, for
dim(H) � 2, there does not exist a density operator ρ such that Wρ,A is dispersion free,
i.e. a point measure, for all A. Gleason [15] has investigated the question whether there are
more general ways of defining a probability measure on spec(A) for all A. To this end he
considered the mappings σ from the set � of all orthogonal projections of H into the real
numbers such that σ(P ) � 0 for all P ∈ � and σ(

∑
i Pi) = ∑

i σ (Pi) for any countable sum
of Pi ∈ �, with PiPj = δi,jPi . In addition he assumed σ(id) = 1. From this he derived
in case of dim(H) � 3 that for any such mapping σ : � → [0, 1] there exists a density
operator ρ such that σ(P ) = Tr(ρP ) for all P ∈ �. Thus the idea of generalizing the formula
Wρ,A(I ) = Tr(ρEA(I)) to Wσ,A(I ) = σ(EA(I)) in order to possibly obtain ‘deterministic
states’, i.e. point measuresWσ,A for allA, and a representation of density operators as mixtures
of these, under the adopted assumptions fails.

The standard quantum physical interpretation of this body of mathematical facts leads to
the following conclusion. It is inconsistent to suppose that the state of an individual quantum
system is a deterministic state, i.e. determines values for all observables, and it is inconsistent to
suppose that a density operator ρ only describes a mixture of such fictitious deterministic states.
(It is generally held inconsistent to suppose that an individual particle has a specific position
and a specific momentum and so on.)
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From this conclusion then the notorious quantum measurement problem follows: how can
standard quantum theory represent within its formalism the mere fact that individual closed
systems do have properties? (This surely is the case for systems comprising an observer and
not being in need of any sort of external observation inducing a state reduction, the quantized
deus ex machina.) Which fact concerning a closed system is it, whose probability of being the
case is given by Wρ,A(I )?

Bohmian mechanics resolves these problems for systems with a Schrödinger (or Dirac)
equation: a picture of individual systems with defined properties emerges. A concise review
of Bohmian mechanics is given in [16]. An informal but clear summary is to be found in
Goldstein’s contribution to the Stanford Encyclopedia of Philosophy [17]. Let us summarize
the basic ideas.

Bohmian mechanics introduces deterministic states which violate Gleason’s assumptions
and accordingly circumvent his theorem. It is assumed that an individual system has a state
(ψ, q) given by a wavefunctionψ in the system’s Hilbert space and a point q in its configuration
space. q is supposed to represent the actual positions of the system’s constituents. Other
observable properties of the system have to be derived from the Bohmian state through a
dynamical analysis of the concrete experiment designed to measure them. In this way all other
properties such as spin or momentum are expressed through the state’s well-defined position
properties. It turns out that the spectral value, which a general observable assumes in a Bohmian
state, depends on the specific way of how this observable is measured, i.e. contextuality is found
to be realized [18]. Accordingly Gleason’s assumptions on the mapping σ are violated because
σ needs a much more complex domain than simply the set of all orthogonal projections.

In order to work out the dynamical program of reducing all state properties to position
properties, the time evolution of Bohmian states is needed. It is assumed to be given by a
Schrödinger equation for the wavefunction and by a time-dependent tangent vector field v on
the configuration space. v is defined in terms of the solution ψt of the adopted Schrödinger
equation with initial condition ψ0 = ψ . The integral curve γq of v with initial condition
γq(0) = q gives the system’s configuration at time t by γq(t).

Finally, Bohmian mechanics establishes contact with empirical data. This happens
according to the rule of quantum equilibrium. It states that for an ensemble of systems,
each with wavefunction ψ , the individual system’s position q belongs to a configuration space
domain � with the usual probability

∫
�

|ψ |2 dnq. A controlled preparation of q contradicting
this rule is assumed to be impossible by present day technology. (All this can be justified to a
certain extent within the Bohmian picture [16].) And finally as a last ingredient it is supposed
that it is the centre-of-mass position of pointers and the like that we observe.

The rules of Bohmian mechanics are such that the probabilistic statements of standard
quantum theory are reproduced. So there seems no room left to argue about the empirical
superiority of either standard quantum mechanics or its Bohmian extension at the ensemble
level. Bohmian mechanics might, however, give a clue for the correct treatment of ensemble
problems, where the standard interpretation remains unclear and offers conflicting strategies.
As described above, standard quantum theory offers various different conceptions for the arrival
time distribution P(T ). Therefore we hold the arrival time problem to be one such opportunity
for Bohmian mechanics to possibly show that it also has its value in dealing with ensemble
problems on top of its merit of providing a language for speaking about individual systems.
We add another conception forP(T )which is motivated by the Bohmian extension of quantum
mechanics. It does not conform to the standard scheme of identifyingP(T )with some quantity
of the type Tr(ρE)withE being independent from ρ. OurP(T ) needs the concept of Bohmian
trajectories for its very formulation. One should note, however, that Bohmian trajectories are
implicit in the wavefunction, whether one intends to make use of them or not.
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3. Galilean spacetime

We model spacetime as a Galilean manifold. Various equivalent definitions of a Galilean
manifold can be given. Here we use the method of a structural atlas. The basic object is the
group G of (orthochronous) Galilei transformations.

 :=
{(

1

v

0

R

)
∈ Gln+1(R) | v ∈ R

n, R ∈ On

}
,

G := {g : R
n+1 → R

n+1, g(ξ) = γ · ξ + a | γ ∈  , a ∈ R
n+1}.

(2)

The elements of R
n+1 and R

n are treated as column vectors throughout the text.

Definition 1. A Galilean manifold (M,AG) consists of a differentiable manifold M and a
subset AG of the atlas A of M, where AG contains global charts only and the set of transition
functions {(2 ◦(−1

1 | (1,(2 ∈ AG} equals G. The charts( ∈ AG are called Galilean charts.

A Galilean manifold carries the canonical time-1-form θ := d(0 with ( =
((0,(1, . . . , (n)t ∈ AG . Observe that θ is independent from the choice of(. Tangent vectors
v ∈ T (M) with θ(v) = 1 are called velocity vectors, and tangent vectors with θ(v) = 0 are
called space-like vectors. The subbundle R(M) := ker(θ) of space-like vectors is completely
integrable. Its integral manifolds are given by *(,t := {p ∈ M | (0(p) = t} where ( ∈ AG
and t ∈ R. These integral manifolds are called instantaneous spaces.

The vector bundle R(M) carries a canonical positive definite fibre metric

〈·, ·〉 :=
n∑
k=1

d(k ⊗ d(k,

where the restriction of d(k to R(M) is again denoted as d(k . Note that 〈·, ·〉 is well defined
as a fibre metric of R(M), but is not so as a fibre metric of T (M). Finally, the Galilean
manifold carries two orientations represented by the two volume (n + 1)-forms

, := {±d(0 ∧ d(1 ∧ · · · ∧ d(n}, ( ∈ AG .

Thus the density |d(0 ∧d(1 ∧· · ·∧d(n| is unique. Various further structures are canonically
defined on (M,AG) as for example a linear connection of the tangent bundle. We shall not
use them here.

4. Conserved flows

Let j be a differentiable tangent vector field on a Galilean manifold (M,AG). By choosing a
volume form ω ∈ , the differentiable n-form J on M is obtained through

J := j�ω : (t1, . . . , tn) �→ ω(j, t1, . . . , tn).

The associated density |J | does not depend on the chosen ω. The divergence of j is the unique
function (see, for example, page 281 of [19]) div(j) satisfying

Ljω = div(j)ω. (3)

Here Ljω denotes the Lie derivative of ω with respect to j . The divergence of j does not
depend on the choice ω ∈ ,. Observe that this definition of the divergence of a vector field
does not make use of a (pseudo-) Riemannian metric. It is built on a given density |ω|. As is the
case with a Galilean manifold, this density |ω| need not be induced by a (pseudo-) Riemannian
metric. If |ω| is the metric density of a (pseudo-) Riemannian manifold, the above definition
for div(j) coincides with the usual one.
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There holds Ljω = j� dω + d(j�ω) = dJ , and therefore

div(j) = 0 ⇔ dJ = 0.

Furthermore, if div(j) = 0, then LjJ = j� dJ + d(j�J ) = j� dJ = 0. In terms of a Galilean
chart ( the divergence of the vector field j = ∑n

k=0 j
k
( · ∂(k reads

div(j) =
n∑
k=0

∂(k [jk(].

Here ∂(k denotes the tangent vector field ∂/∂(k associated with the chart ( and jk( are the
coefficient functions of j with respect to the coordinate frame ∂( := (∂(0 , . . . , ∂

(
n ). For

ω = d(0 ∧ d(1 ∧ · · · ∧ d(n the n-form J is given by

J =
n∑
k=0

(−1)k · jk( · d(0 ∧ · · · ∧ d(k−1 ∧ d(k+1 ∧ · · · ∧ d(n.

Let j be a C1-vector field on M such that θp(j) �= 0 for all p ∈ M. Then the velocity
vector field of j is defined on M by ĵ := (1/θ(j))j . The maximal integral curve of ĵ through
p ∈ M is the (unique) function γ : I → M with γ (0) = p and

γ̇ (λ) = ĵγ (λ) for all λ ∈ I.

Here I is an open real interval, which cannot be extended. The image γ (I ) ⊂ M is called
(integral) orbit of ĵ through p.

Assume the vector field ĵ on M to be complete, i.e. each maximal integral curve of ĵ has the
domain R. Then a unique one parameter group of mappingsFs : M → M withFs(p) = γ (s)

exists, where γ is the maximal integral curve of ĵ with γ (0) = p. There holds Fs ◦Ft = Fs+t
and F−1

s = F−s for all s, t ∈ R. The mapping F : R × M → M, (s, p) �→ Fs(p) is called
the flow of ĵ . Since θ(ĵ ) = 1, for the maximal integral curve through any p ∈ M there
holds ((0 ◦ γ )(s) = (0(p) + s for any s ∈ R and for any ( ∈ AG . Thus no orbit begins or
ends at finite time. In particular Fs carries instantaneous spaces into instantaneous spaces, i.e.
Fs(*(,t ) = *(,t+s .

If now div(j) = 0, we have dJ = 0. From this and because of j�J = j�(j�ω) = 0 there
follows LĵJ = ĵ� dJ + d( 1

θ(j)
j�J ) = 0 and therefore both J and |J | are invariant under the

pull back with the flow of ĵ , i.e. F ∗
s J = J and also F ∗

s |J | = |J | for all s ∈ R. From the pull
back formula for integrals of differential forms then lemma 2 follows.

Lemma 2 (integral conservation law). Let j be aC1-vector field on M such that div(j) = 0,
θp(j) �= 0 for all p ∈ M and such that ĵ is complete. F denotes the flow of ĵ . Then for any
Borel set of an instantaneous space X ⊂ *(,s and for any t ∈ R there holds∫

Ft (X)

|J | =
∫
X

|J |. (4)

Remark 3. Depending on the physical context an integral of the type
∫
X

|J | is interpreted as
the mass or probability ‘contained’ in the instantaneous regionX. The lemma thus establishes
the picture of a flow which transports mass or probability without change along the flow lines.
The same amount of mass which is contained in an instantaneous region X is contained in
Ft(X) for any t ∈ R.

Consider now more general setsX ⊂ M which need not be contained in an instantaneous
subspace. Let us try to formulate a precise notion of the amount of mass passing through X.
A clear and unambiguous way of doing this is by determining the set X̃ of all orbits passing
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Figure 1. Transition of j through X.

through X and by computing the amount of mass carried by these orbits. This can be done
by intersecting these orbits with any instantaneous space *(,t and by integrating |J | over this
intersection. Thus we have motivated the following definition, which is illustrated by figure 1.

Definition 4. Let j be a C1-vector field on M such that div(j) = 0, θp(j) �= 0 for all
p ∈ M and such that ĵ is complete. F denotes the flow of ĵ . Let pr be the projection
pr : R×M → M, (t, p) �→ p and letE(,t be the restriction of the flow F to R×*(,t . Then
π(,t := pr ◦ E−1

(,t is the fibre projection of M onto *(,t along the orbits of ĵ . If for a subset
X of M its projection π(,t (X) ⊂ *(,t is a Borel set, then we define the transition P [X] of j
through X as

P [X] :=
∫
π(,t (X)

|J | ∈ [0, 1].

Remark 5. Note that the transition P [X] does not depend on the chosen hypersurface *(,t .
This follows immediately from π(,s+t = Ft ◦ π(,s and from equation (4) because of∫

π(,s+t (X)

|J | =
∫
Ft (π(,s (X))

|J | =
∫
π(,s (X)

|J |.

Remark 6. Let X1, X2 ⊂ M be disjoint. Then the sets π(,t (X1) and π(,t (X2) need not be
disjoint. As a consequenceP [X1 ∪X2] �= P [X1] +P [X2] in general. ThusP is not a measure.
Yet X1 ⊂ X2 implies P [X1] � P [X2].

5. Detection probability from Bohmian flow

In order to define a (free) Schrödinger equation on a Galilean manifold (M,AG), one has to
choose a tangent frame ∂(, which is associated with a Galilean chart(. Any two such Galilean
charts (1 and (2 are connected by (2 = g ◦(1 = γ ·(1 + a with γ ∈  and a ∈ R

n+1. The
frames then obey ∂(2 = ∂(1 · γ . In terms of this matrix notation the duality between a frame
and its co-frame d( := (d(0, . . . , d(n)t is expressed by the equation d((∂() = In+1, with
In+1 ∈ Gln+1(R) being the unit matrix. There holds d(2 = γ−1 · d(1. Note that d(2 = d(1

and ∂(2 = ∂(1 for γ = In+1, such that a chosen frame determines the chart ( ∈ AG up to an
element a ∈ R

n+1.
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For every Galilean frame ∂( we define the differential operator D∂( operating on C2-
functions ψ : M → C through

D∂( := ih̄∂(0 +
h̄2

2m

n∑
k=1

∂(k ∂
(
k .

The operators D∂( depend on the frame ∂( because of the term ih̄∂(0 . If (1 and (2 are two

Galilean frames with ∂(2 = ∂(1 · γ and γ = ( 1
v

0
R

)
then there holds ∂(2

0 = ∂
(1
0 +

∑n
k=1 v

k∂
(1
k .

The following proposition however, which can be checked easily, shows that the solution
spaces ker(D∂() can be mapped bijectively onto each other.

Proposition 7. Let ∂(1 , ∂(2 be Galilean frames with ∂(2 = ∂(1 · γ , and γ = ( 1
v

0
R

)
. Let the

function φ : M → R be given by

φ = m

h̄

(
v2

2
(0

1 −
n∑
k=1

vk(k
1

)
+ c, c ∈ R.

Then ker(D∂(1 ) is mapped bijectively onto ker(D∂(2 ) through ψ �→ exp(iφ)ψ .

Let ψ solve the free Schrödinger equation D∂(ψ = 0. Then the current (vector field)
j (ψ, ∂() is defined by

j (ψ, ∂() := ψ∗ψ · ∂(0 +
h̄

2mi

n∑
k=1

[ψ∗(∂(k ψ)− ψ(∂(k ψ
∗)] · ∂(k . (5)

Due to D∂(ψ = 0 there holds div(j (ψ, ∂()) = 0. The current’s frame independence follows
through a straightforward computation.

Proposition 8. Let ∂(1 , ∂(2 be Galilean frames and let ψ ∈ ker(D∂(1 ). Then j (ψ, ∂(1) =
j (exp(iφ)ψ, ∂(2).

Remark 9. For ψ ∈ ker(D∂() we thus abbreviate j := j (ψ, ∂().

For ψ ∈ ker(D∂() the unitarity of the Schrödinger evolution implies that the integral∫
*(,t

(ψ∗ψ) · |d(1 ∧ · · · ∧ d(n| is independent of t . If this integral is finite, it may be assumed
to be equal to 1 without loss of generality. In this case each of the hypersurfaces *(,t carries
the probability measure defined for the Borel sets X ⊂ *(,t

Mt(X) :=
∫
X

(ψ∗ψ) · |d(1 ∧ · · · ∧ d(n| =
∫
X

|J |,

where J = j�ω with ω chosen from {±d(0 ∧ · · · ∧ d(n}. The form J is closed because of
div(j) = 0.

In the case ofψ∗ψ > 0 the vector field ĵ is defined on all of M. If ĵ is complete, its global
flow F provides a fibration of M by its orbits. The mappings Ft evolve instantaneous regions
from *(,s into instantaneous regions from *(,s+t of the same probability content. Thus the
orbit space carries the unique probability measure, given by

µ(Y ) := Mt({x ∈ *(,t | ∃o ∈ Y with x ∈ o})
for any t ∈ R. Thus for the transition of j through a set X ⊂ M there holds P [X] = µ(X̃) ∈
[0, 1]. Here X̃ denotes the set of F-orbits intersecting X.

Bohmian mechanics proposes to take seriously the flow lines, i.e. the orbits of ĵ , as the
possible worldlines of a quantum point particle with the wavefunction ψ . Which orbit is
realized in each individual case of an ensemble, is considered as being beyond experimental
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control, and is assumed to be subject to the probability measure represented byM0. In this way
Bohmian mechanics provides a picture of a world with facts, evolving continuously in time,
while simultaneously the quantum mechanical expectation values of fixed time measurements
remain unaltered. A generalization of Bohmian mechanics to wavefunctions, that do not yield
a globally defined complete velocity vector field, has been established in [20].

Within the Bohmian extension of quantum mechanics, the following notion of detection
probability seems plausible. The probability that the Bohmian orbit of a (free) particle with
wavefunction ψ ∈ ker(D∂() passes a given spacetime region X ⊂ M, equals the transition
P [X] of the current vector field j (ψ, ∂() through X. Observe that P [X] does not depend on
the choice of( ∈ AG and that indeed 0 � P [X] � 1 holds. We now suggest that an (idealized)
detector, which is sensitive to the spacetime region X, registers the particle if and only if the
particle’s Bohmian trajectory passes X. Therefore we assume the detection probability within
the spacetime region X to equal P [X].

Let us consider a more specific situation. Let the setX ⊂ M be the union of time translates
of a Borel subset D of the instantaneous space *(,0, i.e.

((X) := {(t, x)t | T1 � t � T2 and (0, x)t ∈ ((D)}
for given T1 � T2 ∈ R. The set X contains the spacetime points covered by an inertial, rigid
detector, which is activated at time T1 and which is turned off at time T2. The number P [X]
is the probability that this detector clicks.

The mapping

δ : {(T1, T2) ∈ R × R | T1 � T2} → [0, 1], (T1, T2) �→ P [X]

is continuous. Furthermore the function T2 �→ δ(T1, T2) is nondecreasing and the function
T1 �→ δ(T1, T2) is nonincreasing. Thus turning off later with T1 being kept fixed does not
diminish and activating later withT2 being kept fixed does not increase the detection probability.

In the next section we make use of the h̄ = 1 and m = 1 simplification of Schrödinger’s
equation. This is obtained by introducing the affine (non Galilean) chart

χ = (χ0, χ1, . . . , χn) =
(

1

h̄
(0,

√
m

h̄
(1, . . . ,

√
m

h̄
(n

)
.

Therefore we have

dχ0 = 1

h̄
d(0, dχ1 =

√
m

h̄
d(1, . . . , dχn =

√
m

h̄
d(n,

∂(0 = 1

h̄
∂
χ

0 , ∂
(
1 =

√
m

h̄
∂
χ

1 , . . . , ∂
(
n =

√
m

h̄
∂χn .

Then ψ ∈ ker(D∂() is equivalent to

i∂χ0 ψ = − 1
2

n∑
k=1

∂
χ

k (∂
χ

k ψ).

The current vector field j , given by equation (5), and the volume form ω := d(0 ∧ · · · ∧ d(n

have the following coordinate expressions in terms of χ

j = 1

h̄

{
ψ∗ψ∂χ0 +

1

2i

n∑
k=1

[ψ∗(∂χi ψ)− cc]∂χi

}
,

ω = h̄n+1

m
n
2

dχ0 ∧ · · · ∧ dχn.
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Thus in terms of the rescaled wavefunction ? := (h̄/
√
m)n/2ψ the current form J = j�ω

finally reads as follows

J = ?∗? dχ1 ∧ · · · ∧ dχn − 1

2i
[?∗(∂χ1 ?)− cc] dχ0 ∧ dχ2 ∧ · · · ∧ dχn + · · · .

6. P (T ) for a Gaussian wavepacket

6.1. The flow map

We assume n = 1 in what follows and we use the more suggestive notation: χ0 =: τ and
χ1 =: ξ . Accordingly we abbreviate: ∂χ0 = ∂τ and ∂χ1 = ∂ξ . Let δ ∈ R>0. Then the complex
valued function ψ on M

ψ :=
√√

m

h̄
? with ? := 1√

δ
√
π

1√
1 + i(τ/δ2)

exp

[
− ξ 2

2δ2

1

1 + i(τ/δ2)

]

solves the Schrödinger equation, i.e. D∂(ψ = 0. It is a Gaussian wavepacket centred at ξ = 0
at all times. The complex square root has its cut along the negative real axis. The current
vector field j := j (ψ, ∂() is given by

j =
√
m

h̄2 ?∗?
[
∂τ +

τξ

δ2�2
∂ξ

]
, with ?∗? = 1√

π�
exp

(
− ξ 2

�2

)
.

Here the positive real valued function �, defined on M, is given by

� := δ

√
1 +

(
τ

δ2

)2

.

For later use we introduce the rescaled current s := (h̄2/
√
m)j = s0∂τ + s1∂ξ . The velocity

vector field associated with j

ĵ = ∂τ +
τξ

δ2�2
∂ξ

is of C∞-type on M.
The integral curves γp of the velocity vector field ĵ through a point p ∈ M are obtained

in terms of the functions x0 := τ ◦ γp and x1 := ξ ◦ γp. They solve the system of first-order
differential equations

ẋ0 = 1,

ẋ1 = x0x1

δ4
(
1 + (x0/δ2)2

)
with the initial condition p0 := x0(0) = τ(p) and p1 := x1(0) = ξ(p). The first differential
equation has the unique, maximal solution x0(λ) = λ + p0 for any λ ∈ R. Inserting this
solution into the second equation yields the non-autonomous first-order differential equation

ẋ1(λ) = (p0 + λ) · x1(λ)

δ4
(
1 + (p0 + λ/δ2)2

) .
Its unique, maximal solution is obtained by separation of variables. It is given by

x1(λ) = p1

√
1 + (p0 + λ/δ2)2

1 + (p0/δ2)2
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Figure 2. Bohmian orbits of a Gaussian wavepacket.

for any λ ∈ R. Thus the vector field ĵ is complete and the flowF : R×M → M defines a one
parameter group of global diffeomorphisms {Fλ | λ ∈ R} of M. The coordinate expression
of Fλ is as follows

( ◦ Fλ ◦(−1 : R
2 → R

2, (p0, p1)t �→

λ + p0, p1

√
1 +

(
p0 + λ/δ2

)2

1 + (p0/δ2)2



t

.

The (maximal) integral orbit of ĵ through p ∈ *(,0 is the set of points  p ⊂ M on which
holds ξ = p1(�/δ). It is the well-known hyperbolic worldline of the Bohmian particle with
wavefunction ψ and passing through p; see, for example, section 4.7 of [21]. Some orbits are
shown by figure 2 in terms of the dimensionless coordinates t := τ/δ2 and x := ξ/δ.

The 1-form J = j�ω = s0 dξ − s1dτ obeys

J = ?∗?
[

dξ − τξ

δ2�2
dτ

]
.

Due to Poincaré’s lemma, J is exact, i.e. there exist functions H : M → R with J = dH .
For any two functions H1 and H2 with dH1 = dH2 = J the difference H1 −H2 is constant on
M. Due to dH = (∂τH) dτ + (∂ξH) dξ , for the function H there holds

∂ξH = J (∂ξ ) = s0 = ?∗? and ∂τH = J (∂τ ) = −s1 = − τξ

δ2�2
?∗?.

A solution to these equations is given by

H := 1

2
erf

(
ξ

�

)
,

where erf : R → (−1, 1) denotes Gauss’s error function

erf(x) := 2√
π

∫ x

0
exp(−z2) dz.

Obviously, H is constant on the orbits of ĵ . This is due to dH(j) = J (j) = ω(j, j) = 0.
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Figure 3. Detector at rest from A to B.

6.2. Detector activated at time 0

Now we discuss the detection probability of a point-like detector, which is exposed to the
wavefunctionψ . The detector is assumed to be located at ξ = L > 0 and is activated at τ = 0.
Thus the detector measures the transition of the current j through the spacetime regions

DT := {p ∈ M | ξ(p) = L and 0 � τ(p) � T } with T > 0.

The boundary of DT equals {A,B} with (τ, ξ)(A) = (0, L) and (τ, ξ)(B) = (T , L) (see
figure 3).

The set of points p0 ∈ *(,0 whose integral orbits  p0 intersect DT is due to �(p0) = δ

π(DT ) =
{
p0 ∈ *(,0 | there exists a p ∈ DT with

ξ(p)

�(p)
= ξ(p0)

δ

}
.

Thus we obtain

π(DT ) =
{
p0 ∈ *(,0

∣∣∣∣ Lδ

�(B)
� ξ(p0) � Lδ

�(A)

}
.

Due to �(A) = δ and �(B) = δ
√

1 + (T /δ)2, this yields

π(DT ) =
{
p0 ∈ *(,0

∣∣∣∣ L√
1 + (T /δ)2

� ξ(p0) � L

}
.

The boundary of the line segment π(DT ) equals {A,C} with

(τ, ξ)(C) =
(

0,
L√

1 + (T /δ)2

)
.

The detection probability P [DT ] then follows by integrating |J | over π(DT )

P [DT ] =
∫
π(DT )

|J | =
∫
π(DT )

|(∂ξH) dξ | = H(A)−H(C)

= 1

2

[
erf

(
L

δ

)
− erf

(
L

δ
√

1 + (T /δ)2

)]
=: δL(0, T ).

The function δL(0, ·) is monotonically increasing, has the value 0 at T = 0 and tends to
1
2 erf(L

δ
) ∈ (0, 1

2 ) for T → ∞. The detection probability stays below 1/2 because no left
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Figure 4. Detection probability P [DT ].

moving orbit intersects with the detection region DT . The limit of a far away detector yields
limL→∞ limT→∞ δL(0, T ) = 1/2.

Figure 4 shows P [DT ] as a function of the dimensionless time t := T/δ2 for L = 100δ,
i.e. the function

f : R�0 → [0, 1], t �→ 1

2

(
erf(100)− erf

(
100√
1 + t2

))
.

The equality between P [DT ] and P(T ) as given by Leavens [6–8], we denote it PL(T ),
can be derived as follows. The line segment DT has the boundary points A and B. The points
B andC belong to the same orbit  B of j . The part of  B lying in between B andC is denoted
by  B,C . Thus the union of the three segments DT ,  B,C and π(DT ) is a closed line K ⊂ M.
The orientation ofK and its boundary ∂K is determined by the chosen ω [22]. The application
of Stoke’s theorem to the spacetime region K interior to this closed line gives

0 =
∫
K

dJ

=
∫
π(DT )

J +
∫
DT

J +
∫
 B,C

J.

Since
∫
 B,C

J = 0, because of ĵ�J = 0, and s0, s1 � 0 on ∂K , we obtain from this

P [DT ] =
∫
π(DT )

|J | =
∫
DT

|J | =
∫
DT

|s1 dτ | =: PL(T ).

Due to H(B) = H(C), one explicitly verifies

PL(T ) =
∫
DT

|J | =
∫
DT

|dH | =
∫
DT

|(∂τH) dτ | = H(A)−H(B) = P [DT ].

Thus in the present case the detection probability P [DT ] is obtained by integrating the density
|s1 dτ | along the detector worldline DT . Obviously, the equation

P [DT ] =
∫
DT

|s1 dτ | (6)

is due to the absence of multiple intersections between DT and the individual Bohmian orbits.
We construct an explicit counterexample to equation (6) in the next subsection.

From the function δL(0, ·), the conditional probability density of arrival times at a detector,
which is activated at τ = 0, can be obtained as follows. The conditioning is with respect to
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Figure 5. Conditional probability density w̃ of arrival times.

those events, where the particle is detected at all by this detector. We define the normalized
conditional distribution function

W(T ) := δ(0, T )

limT→∞ δ(0, T )
= H(A)−H(B)

H(A)
.

The differential dW yields the conditional probability density w|dT | := |dW | of detection
times. Thus w(T ) = dW(T )/dT .

w(T ) = −(∂τH)(B)
H(A)

= j 1(B)

H(A)

= 1

erf(L/δ)

(
−∂τ erf

(
ξ

�

))
(B)

= 2√
π erf(L/δ)

LT

δ5
(
1 + (T /δ2)2

) 3
2

exp

(
− L2

δ2
(
1 + (T /δ2)2

)).
The density w̃ of the dimensionless time t := T/δ2 is defined through w̃(t) dt = w(T ) dT

and thus with λ := L/δ we obtain

w̃(t) = 2λ√
π erf(λ)

t

(1 + t2)
3
2

exp

(
− λ2

1 + t2

)
.

Figure 5 shows the graph of w̃ for λ = 100.
Since limt→∞ t2w̃(t) > 0, the improper integral limG→∞

∫ G
0 tw̃(t) dt does not exist. Thus

an average (conditional) detection time also does not exist.

6.3. Detector activated before time 0

In order to be sensitive to the contractive phase of the wavefunction, we now assume that the
detector is turned on at some time TA < 0. It thus measures the transition through the sets of
spacetime points

DT := {p ∈ M | ξ(p) = L and TA � τ(p) � T } with T > TA.

The boundary ∂DT equals {A,B}, where (τ, ξ)(A) = (TA, L) with TA < 0, L > 0 and
(τ, ξ)(B) = (T , L) (see figure 6). We shall see the difference between P [DT ] and P(T )
according to Leavens [7], we again denote it as PL(T ), clearly.
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Figure 6. Detector at rest from A to B.

The transition P [DT ] then follows by inspection of π(,0(DT ). With the auxiliary point
C := DT ∩ *(,0 we obtain in terms of the dimensionless coordinates t = T/δ2, tA =
TA/δ

2, λ = L/δ

P [DT ] =



H(B)−H(A) for TA � T < 0

H(C)−H(A) for 0 � T < −TA
H(C)−H(B) for − TA � T

=




1

2

(
erf

(
λ√

1 + t2

)
− erf

(
λ√

1 + t2A

))
for tA � t < 0

1

2

(
erf(λ)− erf

(
λ√

1 + t2A

))
for 0 � t < −tA

1

2

(
erf(λ)− erf

(
λ√

1 + t2

))
for − tA � t .

Figure 7 shows P [DT ] (solid curve) as a function of t for λ = 100 and tA = −√
3 · 100. For

t > 0 our expression P [DT ] for the detection probability P(T ) differs considerably from the
integral of |J | over DT , proposed by Leavens to represent P(T ). This latter integral yields

PL(T ) :=
∫
DT

|J | =
{
H(B)−H(A) for t < 0

2H(C)−H(A)−H(B) for t � 0

=




1

2

(
erf

(
λ√

1 + t2

)
− erf

(
λ√

1 + t2A

))
for tA � t < 0

erf(λ)− 1

2

(
erf

(
λ√

1 + t2A

)
+ erf

(
λ√

1 + t2

))
for t � 0.

Its dependence of t is shown for λ = 100 and tA = −√
3 · 100 as a dashed curve in figure 7.

P [DT ] is constant for 0 < T < −TA, while PL has a point of stationarity only for T = 0.
For 0 < T < −TA orbits cross the detector’s worldline, which have done so before. Only past
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Figure 7. Distribution functions P [DT ] and PL(T ).
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Figure 8. Conditional distribution functions of PL(T ) and P [DT ].

the pointA′ with ξ(A′) = L and τ(A′) = −TA the probability P [DT ] increases again, because
orbits are passing, which have not done so before.

Figure 8 finally shows the conditional probabilities

P(T )

limT→∞ P(T )
,

associated with Leavens’ proposal P(T ) = PL(T ) (dashed) and P(T ) = P [DT ] (solid)
respectively.
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